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Abstract 
Cislunar space is a readily accessible region that may well develop into a prime staging 
area in the effort to colonize space near Earth or to colonize the Moon. U’hile there have 
been statements made by various NASA programs regarding placement of resources in 
orbit about the Earth-,Moon Lagrangian locations, there is no survey of the total cost 
associated with attaining and maintaining these unique orbits in an operational fashion. 
Transfer trajectories between these orbits required for assembly, servicing, and 
positioning of these resources have not been extensively investigated. These orbits are 
dynamically similar to those used for the Sun-Earth missions, but differences in 
governing gravitational ratios and perturbation sources result in unique characteristics. 

U’e implement numerical computations using high fidelity models and linear and non- 
linear targeting techniques to compute the various maneuver AV and temporal costs 
associated with orbits about each of the Earth-Moon Lagrangian locations (Ll, L2, L3, L4, 
and L5). From a dynamical system standpoint, we speak to the nature of these orbits and 
their stability. We address d e  cost of transfers between each pair of Lagrangian 
locations. 
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I. Introduction 

Libration 
Orbit 
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L1, LZ, L3 

L4 and L5 

With the recent announcement of the Vision for Space Exploration, ready access to Cislunar 
space has become vital to achieving future space exploration goals. Missions may be established 
in Earth-Moon libration orbits as a part of communication architecture or to deploy and service 
spacecraft either in transit from the Moon or stationed at other Sun-Earth or Earth-Moon libration 
regions. To understand the costs associated with these missions, a survey of stationkeeping about 
all Earth-Moon libration points and the AVs to transfer between them is investigated. Analysis 
suggests these costs can range from centimeters per second per year for the more stable orbits of 
the co-linear L3, and triangular L4 and L5 locations to nearly tens, possibly hundreds of meters per 
second for the unstable co-linear L1 and L2 locations. Of course stationkeeping cost depends on 
several parameters, such as orbit amplitudes (as measured in a rotating, libration centered 
coordinate system), mismodeled accelerations due to solar radiation pressure and third body 
gravity, the calibration of the propulsion system, and the accuracy of the post maneuver 
navigation solutions. Our analysis incorporates these errors into both linear and nonlinear control 
efforts to estimate the yearly stationkeeping cost for all the Earth-Moon libration orbits. We also 
address the AV cost of transfers between these orbit locations. 
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A. Initial Conditions 

Figure 1 presents the orbit geometries of interest and orients the reader to the coordinate system 
used in the simulations. All orbital parameters are stated in the Earth-Moon Rotating Libration 
Point (RLP) coordinate system, where the line from the Earth to the Moon represents the +x-axis, 
the velocity direction of the Moon the +y-axis and the +z-axis completes the triad. Both Lissajous 
and halo (periodic) orbits are surveyed. The orbital parameters for the halo orbit are computed 
from the dynamics of the region and the equations of motion where the out-of-plane and in-plane 
frequencies are equal.' For our initial conditions, we solved the frequency equations for the z-axis 
component versus the x-axis component. This solution allows us to initialize the orbits along the 
x-axis so that we can input the initial state simply as the x and z-axes positions and the y-axis 
velocity with all other components set to zero. Figure 2 shows this relationship between in-plane 
x-amplitude and out-of-plane z-amplitude for the Earth-Moon system by solving 

W, = 0.1387811*(Emm~m,ss>2 +0.04349909* Ay2 -0.04060812*Az2 

W ,  = 0.5981779*(Em.s~masJ)' -O.03293845* Ayz +0.03923249*Az2 
with f = 1 . 8 6 5 4 8 5 * ( ( 1 + ~ ~ ) * ~ ; ~ ) - 1 . 7 9 4 2 9 i * ( ( i + ~ ~ ) * ~ ~ ~ )  

where Emass/Mmass is the Earth to Moon mass ratio and M is the non-dimensionalized lunar 
mass. Table 1 provides the initial RLP centered coordinates of the co-linear and triangular 
libration orbits surveyed. 
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Figure 1. A View Of All Libration Orbits In The Earth-Moon System 

B. Historical Overview and Previous Work 
5x  lob , 

There are numerous references for the 
discussion of stability and control for both 
co-linear and triangular locations. In the 
1960s, Steg and Michael provided analysis of 
the stability of triangular regions and a 
discussion of the motion of a particle placed 
at the Earth-Moon Ls l~cation.'.~ They 
investigated the influence of third body 
perturbations and an elliptical lunar orbit was 
introduced. Farquhar and Hoffman provided 
analysis and discussion of stability and 
control of the Earth-Moon co-linear L2 and 
L1 locations, respectively, in a classical 
control theory or linear approximation while 
more recently Scheeres provides a statistical 
analysis a p p r o a ~ h . ~ , ~ , ~  Howell and Keeter 
addressed the use of selected maneuvers to 
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Figure 2. Earth-Moon X-Amplitude vs. Z 
Amplitude for Equal Frequencies 

eliminate the unstable modes or a reference orbit. ' Of course, centuries ago, others provided the 
basics of the dynamics of these locations. such as Euler, Lagrange: and Jacobi. The Jacobi 
integral will be used herein for a discussion of the stability of triangular locations and transfer 
trajectories fiom triangular locations to co-linear locations.8 Howell provides an excellent 
discussion of stability including the Eigenstructures in the Sun-Earth locations.' Folta, et a1 
provides an analysis of transfers between the Sun-Earth locations and the Earth-Moon locations.'o 
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II. Dynamics Of The Earth-Moon Region 

0 .l 

0.05 

0 

- 0.05 

- 0.1 

The equations of motion of a spacecraft in the Earth-Moon regon are similar in nature to those of 
the Sun-Earth The Earth-Moon mass ratio of approximately 0.012 is the major 
difference. From this information, one can construct the Circular Restricted Three Body (CRTB) 
process matrix or state Jacobian at the libration point using the pseudopotential. Unfortunately 
doing so does not allow the analyst to include the effects of lunar eccentricity, solar gravity, and 
solar radiation pressure directly into the state integration process. Past efforts included the use of 
disturbance accommodation techniques to eliminate a control effort to address natural m0ti0n.~ 
The generation of our initial state and the integration of our states use full ephemeris models and 
not analytical approximations. As numerous references are available on the derivation of the 
equations of motion they will not be discussed here. To use full ephemeris modeling in the 
controller design, we use the process matrix estimates at the end of each integration output 
interval." This interval is a user defined interval and was selected as '/4 orbit for our cases. 

The eigenstructure of the libration orbits about L1 and L2 can be constructed to give the reader a 
sense of the stable and unstable directions in the Earth-Moon system, obviously important in 
stationkeeping. Figure 3 presents the stable and unstable modes associated with the Earth-Moon 
system for a specified L1 orbit. The motion of a spacecraft is dependent upon the dynamical 
nature of the region for its orbit stability and this influences the methods for transfer between the 
libration points. The goal in our analysis is to minimize the cost, while using realistic time 
transfers of less than 28 days. In addition to the eigenstructure, the Jacobi constant can also be 
used to visualize the possible paths of transfers and motion about the more stable locations - 
Earth-Moon L3, L4, and L5.' Figure 4 presents the lines of zero velocity for the Earth-Moon 
region. These curves bound the motion for a given Jacobi constant (C) with values of 2.991 to 3.2 
shown, with the lower C values at L4 and L5. 
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Figure 3. Stable and Unstable Earth-Moon 
Directions ( L,) 

Figure 4. Lines of Zero Velocity 

A. Modeling and conditions 

A full ephemeris model is used with point mass Earth, Moon, and Sun gravity, solar radiation 
pressure based on a spacecraft area of 5m2, a mass of 1000 kg, and use of DE405 files for the 
location of each body. Our integration uses a variable step Runge-Kutta 8/9 with pulsating 
coordinates. The pulsating coordinate system is formulated from the time dependent position of 

\ 
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the Earth and Moon calculated at each integration step. The libration point locations are also 
caicuiated at the same integranon imerval. 

B. Numerical Models: Discrete Linear Quadratic Regulator and Differential Correction 

In addition to the numerically calculated AVs, MATLAB Simulink is used for an implementation 
of discrete Linear Quadratic Regulator (dLQR) control. The dLQR was implemented to compare 
and contrast the stability and control required using discrete thrust applied about the orbit for 
stationkeeping to that of an operational environment where maneuvers are limited in location and 
time. A discrete controller is useful in assessing the stationkeeping AV since it provides 
consistency with previous work that used linear ana ly~is .~ .~ .~  A continuous controller could have 
been used as well, but continuous methods are not used in the operational environment since 
maneuver planning is not just a function of trajectory correction needs, but also on spacecraft 
operations, science operations, momentum management, and communication requirements to 
name a few. The MATLAB simulation is shown in Figure 5. 

B.1. MATLAB Simulink - Discrete LQR 

The dLQR method implemented is the standard method that is based on linearization of the 
system and the use of an algebraic Riccati equation to solve for the gain.” A continuous control 
can be computed using linear dynamics derived fiom the mean motion and mass ratios of the two 
primary and secondary bodies, but it does not include the perturbations and ephemeris in the 
dynamics. For our discrete LQR control, several modifications were made. To compute a linear 
dynamics model, a multiple revolution numerically stable orbit was computed in GSFC’s 
Swingby program. The initial velocity conditions were changed to balance the orbit through a 
differential correction process to the AV accuracy of the processor, approximately 1 .Oe-16. The 
modeling includes the point mass perturbations of the Earth, Moon, Sun, solar radiation pressure, 
and major planets, sometimes referred to as using full ephemeris, and includes the lunar and 
planetary eccentricity. From this numerically balanced orbit, several matrices may be calculated: 
the process matrix or state Jacobian, the state transition matrix (STM), and the monodromy 
matrix. For our simulation, the process matrix was used to represent the tracking error dynamics. 
The process matrix and state transition matrix where calculated on the reference orbit by the 
Generator program developed by Purdue University. These matrices were then used at a user- 
defined interval (we updated these matrices at intervals between 1 and 3.5 days) as input to the 
dLQR process. After each update, the Riccati equation was solved to obtain the discrete control 
gain assuming a zero-order hold. To simulate the controller we used a slight mismodeling of 3% 
in the SRP for the controlled orbit and trajectory errors. This mismodeling of the solar radiation 
pressure is consistent with results observed by the GSFC Flight Dynamics Facility. The 
navigation errors were assumed to have a uniform random distribution with a limit less than 1 
c d s  in each direction. Navigation errors were applied after each maneuver. The errors in 
maneuver magnitude were modeled at 2% in both positive and negative maneuver directions. We 
used diagonal control weights of le-1 1, position weights of le-2, and velocity weights of l e 4  for 
the dLQR. 
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Figure 5. MATLAB Simulink Setup for dLQR Stationkeeping 

B.2. Numerical Targeting - Differential Correction 

. 
Selector 

The Differential Correction (DC) scheme is based on the construction of an invertible sensitivity 
matrix by numerical sampling achieved goals for given initial velocity perturbations. A simple 
matrix multiplication is performed to compute the new variable updates (the stationkeeping 
maneuver) to achieve the target goals. The DC uses several variables and target goals specific for 
each orbit class controlled. For example, for a Lissajous orbit all targeting was performed with 
the goals assigned to the x-z plane crossing in the Earth-Moon RLP coordinate system (see Figure 
l).I4* Is For Lissajous orbits, a AV on the x-axis was targeted that would balance the orbit to 
achieve another revolution with an associated zero velocity in the x-axis direction. If the orbit was 
not a single periodic orbit, we deferred to a doubly periodic target (twice around). For the halo 
orbit classes, an additional impulsive maneuver was performed to retain the z amplitude of the 
initial conditions. The location of this additional AV was adjusted to provide a minimal AV cost, 
but a 111 trade to identify minimum or optimum locations on an orbit-by-orbit basis was not 
performed. 

13 

The differential correction scenario was developed to compare the more frequently published 
LQR or dLQR method to a more realistic operational scenario. A differential correction scheme 
using Analyhcal Graphics’ Satellite Tool Kit (STK)B Astrogator module and Swingby was 
implemented with the idea of adding maneuver and navigation errors similar to those for the 
Simulink scenario, but in an operational mode. The differential correction stationkeeping 
analysis was performed using Astrogator. The analysis was partially automated using 
MATLABB and STK’s Connect and MATLAB Interface modules to build stationkeeping 
scenarios up to 1 year in duration. Stationkeeping of Lissajous orbits was performed impulsively 
in either of two directions, along the x-axis or the y-axis of the Earth-Moon €UP coordinate 
system. Maneuvers were only allowed to occur at the x-z plane crossings and the target at each 
crossing is a velocity of zero in the x-axis direction of the Earth-Moon RLP coordinate system. 
This method does not follow a reference orbit but simply tries to keep the spacecraft in an orbit 
about the libration point while trying to meet the required amplitudes. For the halo orbits the 
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strategy is slightly more complicated. It begins with a maneuver in the RLP x-axis direction at 
the initial x-z plane crossing to initially balance the orbit at the next x-z plane crossing. Starting 
back at this initial location, another maneuver in the x-axis direction is applied, the orbit is 
propagated for approximately 1.5 days, and an additional maneuver is applied in the RLP z-axis 
direction to achieve an RLP x-axis velocity of zero and a z-amplitude consistent with the initial 
state at the next x-z crossing. At this point a maneuver is applied in the RLP x-axis direction to 
achieve an RLP x-axis velocity of zero at the subsequent x-z plane crossing where the entire 
sequence begins again. 

III. Stationkeeping Results 

Over a restricted range of orbit dimensions (see Table l), we provide a parametric survey of the 
total stationkeeping AV associated with each libration point orbit. A combination of Lissajous and 
halo orbits for the co-linear locations and a y-amplitude for the triangular cases was used to 
estimate the control efforts. Our analysis uses an impulsive AV maneuver model. This method is 
chosen to develop feasible strategies that meet operational limitations. Our initial analysis 
indicates that one can target to a dozen libration orbit revolutions, but the control precision of the 
initial velocity to achieve the orbit goals approaches values unattainable by any operational 
propulsion system. There is also the problem that the dynamics of the problem for multi-rev orbit 
targeting are sensitive to perturbations on the order of le-12 M s e c .  

A. Stationkeeping at Unstable Co-linear locations, L, and L2 

Tables 2-6 provide the yearly stationkeeping AV cost along the x-axis and y-axis associated with 
the initial conditions listed in Table 1 for the DC and dLQR methods. Figures 6 though 13 present 
selected individual and cumulative AV stationkeeping costs for the values in bold type in Table 3. 
As seen in the figures, the control effort is dependent upon the perturbations included. RLP y- 
axis control proved to be approximately twice as expensive as x-axis control, which is typical of 
past experience. Table 6 provides AV cost for dLQR control. 

Table 2. Differential Correction Stationkeeping Yearly Cost with No Errors ( d s )  

Small Lissajous Small Halo* Large Lissajous Large Halo’ 
15.63 132.57 61.84 211.98 L1 x axis control 

L1 y axis control 34.47 171.99 116.09 308.74 
L2 x axis control 13.81 184.37 73 .OS (1 1 Odays) 3 16.99 
L2 y axis control 22.84 197.38 227.57 380.84 j 
ii - z-axis control mcluded 

Table 3. Differential Correction Stationkeeping Yearly Cost with Navigation 
and SRP Errors (No AV errors)(ds) 

Small Lissajous Small Halo’ Large Lissajous Large Halo‘ 
L1 x axis control 22.90 135.19 67.37 211.21 
L, v axis control 53.44 184.53 1 117.82 306.23 

j L~ x axis control 17.86 180.27 72.54(110d) I 31630 I 
1 L? y axis control 29.64 198.63 235.99 383.91 

- z-axis control included (Bo d x-axis co3tro! data IS p OW ox next nvo pages) 
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I .  

Table 4. Differential Correction Stationkeeping Yearly Cost with Navigation, 
SRP, and +AV Errors(ds) 

Table 5. Differential Correction Stationkeeping Yearly Cost with Navigation, 
SRP, and -AV Errors ( d s )  

Small Lissajous Small Halo’ Large Lissajous Large Halo’ 
L1 x axis control 68.06 433.57 62.83 (93d) 192.63 
L1 y axis control 95.52 88.25(108d) 132.81(118d) 228.55( 146d) 
L2 x axis control 22.1 1 44.1 5 (66d) 165.12 46.72( 14d) 
L2 y axis control 36.37 2 13.19(272d) 179.23 47.18( 14d) 
# -z-axis control included 

Table 6. dLQR Stationkeeping Yearly Cost ( d s )  

Small Lissajous Small Halo Large Lissajous Large Halo 
L1 no errors 6.41 6.1 1 5.61 5.99 
L1 with errors 61.26 61.13 60.22 60.48 
L2 no errors 5.37 5.38 5.38 5.61 
L2 with errors 60.87 61.00 59.88 59.86 

The cost of stationkeeping using the dLQR controllers is similar to those reported by Hofhan 
and Farquhar where for a Lissajous with amplitudes of approximately 10,000 km in x-axis and 
20,000 km in z-axis the AV cost per year was 5 1.4 m l s  and 23.5 m l s ,  re~pectively.~’~ Similarly, 
for a halo orbit with amplitudes of 1,000 km in x-axis and 3000 km in z-axis, they report 132.0 
m l s  and 140.0 d s ,  respectively. The major difference in this work is the inclusion of 
perturbations and the use of a full ephemeris model. The other references used CRTB with 
perturbation added separately. In Hoffman, a disturbance accommodation method was used to 
remove frequencies associated with lunar eccentricity, etc., that the control effort should avoid in 
minimizing the stationkeeping cost. Note that the DC yields AV cost lower than the dLQR for 
Lissajous orbits, as a reference orbit is not followed. The halo orbit DC AV cost is quite large in 
comparison. This can be explained by the choice to force the z-amplitude to remain near the 
initial condition by non-optimal maneuver locations even though the environmental perturbations 
immediately affect the z-axis value. 
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Figure 6: X-axis Control, Small L1 Lissajous Figure 7: X-axis Control, Large L1 Lissajous 
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Figure 8: X-axis Control, Small L2 Lissajous Figure 9: X-axis Control, Large L2 Lissajous 
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Figure 10: X-axis Control, Small L1 Halo 
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Figure 11: X-axis Control, Large L1 Halo 
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Figure 12: X-axis Control, Small L2 Halo Figure 13: X-axis Control, Large L2 Halo 
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B. Stationkeeping at the Co-hear L3 point 

Stationkeeping about the Earth-Moon L3 point is unlike stationkeeping about the L1 or L2 
locations. This location is quasi-stable in that selection of correct initial velocities can keep the 
spacecraft in the L3 vicinity for approximately a year without the need for additional control 
efforts. Initial conditions are found though a DC process targeting on the x-axis velocity equal to 
zero (as in the L1 or L2 scenario). Figure 14 presents two different orbits, a small halo and a large 
Lissajous, similar to those used for the L1 and L2 analysis (see Table 1). As seen in the figure, the 
orbits are stable for the duration of the simulation - 250 days. When the orbit becomes unstable, 
either due to the dynarmcs or by a maneuver, the ensuing trajectory can be predicted by the 
computation of the Jacobi constant. Its natural motion after leaving the L3 location is to remain at 
about the --Moon distance, but to evolve in a trajectory defined by zero-velocity curves. 

Figure 14. Colinear L3 Small halo and Large Lissajous Orbits 

C. L4 / L5 Stationkeeping 

Stationkeeping about L4 and Lj is defined by the natural dynamics of a quasi-stable location. 
Orbits about these locations can remain stable for extended periods. One can use the Jacobi 
constant to define the region of interest or simply numerically integrate the equations of motion. 
These orbits do not require the same stationkeeping maintenance as those about L, or L2 , and are 
typically insensitive to mismodeling such as effects of errors in the SW estimate. A peculiar 
property of the L4 and Lj locations is that motion about each location is determined by 
fundamental frequencies that define a long period and a short period. Several references have 
discussed this at length with explanations of the effects of the Earth-Moon mass ratio and solar 
gravity perturbati~n.’~’ Our goal is to find L4 and Lj orbits that meet the short term frequency (28 
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day period) so that the motion of the orbit does not have a natural double frequency motion or 
escape the vicinity of the libration point. By judiciously selecting the initial conditions, an 
elliptical motion can be achieved by the elimination of the long period frequency. To accomplish 
this a differential correction scheme can be used to target the initial velocity vector to achieve the 
desired goal. We chose an initial condition that starts on the Earth-L4 (or equally L,) line with a 
velocity perpendicular to this line and in the direction of natural rotation to facilitate in attaining 
such an orbit. The target in this case is not the x-axis velocity, but the C3 energy of the orbit with 
respect to the Earth. A C3 level of -1.00 km’/sec’ minimizes the maximum elliptical distance and 
keeps the orbit motion about L4 or L5 for several years. Following the analysis by Michael, a 
maximum distance can be computed, but only for a CRTB system.’ Analysis using the effects of 
solar gravity and lunar eccentricity shows an expanding and contracting motion of the orbit. In 
reference 2, the motion began at the L4 location itself. For our analysis, we assume that an orbit 
will be achieved after insertion from a transfer trajectory, so we used initial conditions similar to 
those of the L, and L2 orbits, in both L4 centered x and y rotating coordinates (assuming Earth- 
Moon rotating coordinate directions for the axes). The procedure for this initial condition 
selection can also be used for stationkeeping. Even with the targeted initial conditions, integrating 
with a full ephemeris model shows that the orbit will degrade and leave the L4 region, either from 
a lunar encounter or a change in the overall orbital energy due to third body accelerations or mis- 
modeling. 

A simple calculation of the AV required to reset the C3 to the -1 .OO km’/s’ value was performed 
at an Earth apogee which yields an approximate L4 x-axis crossing. The angle with respect to the 
radial line to the Earth was chosen to be -90 degrees. Initial velocity vector magnitudes and 
angles from the spacecraft-to-Earth line and the stationkeeping AVs to maintain L4 orbits are 
shown in Table 7 for several orbit amplitudes. Figures 15 and 16 show some sample orbits. The 
upper left shows the L4 orbit as it expands and contracts. The upper right is a polar plot of the 
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Figure 15. L4 Orbits, C3 and Semi-major Axis Information for Large Initial Amplitude 
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Figure 16. L4 Orbits, C3 And Semi-Major Axis Information For Small Initial Amplitude 

Initial velocity Stationkeeping Duration of 1 C3 (km*Isec') 
AV ( d s )  and simulation (days) variation 
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Mean Eq2000) 
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C3 level versus the Right Ascension of the velocity. The lower left is the time history of the 
semi-major axis and the lower right is a time history of the C3. 

IV. Transfer Results 

There obviously are an infmite number of possible transfers between libration orbits. Our 
numerical analysis looks at the most direct transfers that do not take us close to Earth (for 
radiation and shadow concerns) and that try to limit to a reasonable duration the transfer time. A 
target of less than a 28-day transfer was used, but as shown in the analysis, to minimize the AV 
cost a natural motion is necessary which usually increases the transfer time duration. We used a 
DC process when possible and numerical integration (RK819) of the states along with fill 
ephemeris and point mass gravity. 
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A. Co-linear to Co-linear 

A natural transfer between co-linear orbits is defined by the eigenstructure of the co-linear STM 
and the dynamics in question. Using the STM data generated in the above section for 
stationkeeping, an eigenvector map was generated and was plotted (Figure 2). As expected, for 
co-linear based orbits the unstable and stable modes are in the familiar directions and indicate that 
direct transfers between the co-linear locations are straightforward. That is, one uses the unstable 
mode of LI/Lz to perform a AV (possibly of zero d s  magnitude) to transfer to the stable mode of 
L2/L1 once the trajectory has moved to the other side of the secondary mass. This motion can be 
seen in Figures 17, 18, 19,20, and 21 where a simple parametric scan was run that varied the time 
of a 10 c d s  maneuver at a one day interval about the L1 or L2 orbits. Depending on the sign of 
the AV, the departure manifold either returned to the secondary mass, in this case the Moon, or 
went into orbit about Earth, or departed the Earth-Moon region. 

Departure Manifold 

L2 Libration Orbit 
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Figure 18. Lz Manifold with Velocity 
Decrease 
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Figure 19. L2 Manifold with Velocity 
Increase 
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Figure 20. L1 Manifold with Velocity 
Decrease 

Figure 21. LI Manifold with Velocity Increase 

B. L1 to Lz, L3 
Applying a small AV to change the velocity of the orbit in L1 centered coordinates we can 
perform the transfer from L1 to other co-linear locations. A small increase will guide the 
spacecraft into a trajectory that will pass by the secondary mass (Moon) and flip to the L2 side. 
The AV to complete this transfer needs to be on the order of 0.1 c d s  to ensure that the capture 
can be completed without placing the spacecraft on an outbound manifold into the Earth-Sun 
regon or back towards Earth. Using a small AV to decrease the velocity, the orbit will travel on 
the unstable manifold towards Earth and approach the L3 co-linear location. A AV of 260 d s  is 
required at perigee to adjust the apogee and an insertion AV of approximately 220 m / s  will insert 
the spacecraft into a L3 orbit. Figure 22 presents a sample trajectory for a transfer from L1 to Lz. 
Figure 23 shows a 55-day transfer from L1 to L3. 

-1 0000 I 

Earth-Moon Rotating Coordinates ' c - 36 days i 

Figure 22. Transfer from L, to Lz Figure 23. Transfer from L1 to L3 
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c. L2 to L1, L3 
Similar to the L1 scenario, a small AV allows a transfer from L2 to the other co-linear locations. 
These transfers can be performed by applying a small AV to decrease the velocity of the orbit in 
L2 centered coordinates. This decrease will guide the spacecraft into a trajectory that will pass by 
the secondary mass (Moon) and flip to the L1 side. The AV to complete this transfer needs to be 
on the order of centimeters per second to ensure that the capture can be completed without 
placing the spacecraft on an inbound manifold towards the Earth. Once in orbit about L1, by using 
a small AV to increase the velocity, the orbit will travel on the unstable manifold towards the 
Earth, swing past the Earth and approach the L3 co-linear location. At this point it is the same as 
the trajectory above. An insertion AV of approximately 200 m / s  will insert the spacecraft into a 
L3 orbit. 

D. L3 to L1, L2 
An orbit about the Earth-Moon L3 location is quasi-stable and a small maneuver can place the 
spacecraft on a trajectory that will transfer it to L1 or Lz. In Figures 24 and 25, a small 1-m/s 
maneuver was used to initiate the transfer from the L3 orbit to the L2 location. Once there a small 
maneuver of approximately 55 m/s can be used to capture into an orbit that will facilitate transfer 
to a smaller selected libration orbit. The transfer duration was 66 days, much higher than our 
desired goal of 28 days. A transfer to L1 from L2 required an additional 26 m/s.  

\ AVl andAV2 
\ 

Figure 24. Transfer from L3 to L2 

E. Triangular to Triangular 

Figure 25. Transfer from L3 to L1 

A natural transfer from triangular orbits is not defined by the eigen-information of the STM but 
by the dynamics in question. Using the information generated for stationkeeping in these regions, 
a Jacobi zero-velocity curve can be used to identify the trajectories of interest, keeping in mind 
the objective of minimizing the trip time. As expected, for triangular based orbits the zero- 
velocity curves are in the familiar directions and indicate that a direct transfer between the 
triangular locations is straightforward. That is, once a change in velocity has occurred, the 
spacecraft will ‘drift’ in the allowable regions until it approaches the other triangular location. 
This motion can be seen in Figure 26. Given enough time, the transfer from L4 to L5 or vice 
versa, can be achieved over an infinite selection of trajectories. Our goal is to minimize the trip 
time, so we limited our analysis to two-week trip times. A simple differential corrector scheme 
was used to target to the other triangular location once a trajectory profile that met the trip time 
requirement was found. Figure 26 shows a trajectory L4 to L5. The total AV was 228 m / s  (144 
m / s  for departure, 114 m / s  to capture) with a 45-day transfer duration. 
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Figure 26. Transfer from L4 to L5 

F. Co-linear to Triangular 

Following the unstable modes of the L2 and L1 co-linear locations, it can be seen in Figure lat 
it is not possible to achieve a direct natural transfer fi-om the co-linear to triangular &ations by 
using the ‘outbound’ manifold. In fact it is not possible to achieve the transfer within a reasonable 
trip time (less than one month) without using the unstable mode that results in a trajectory that 
flows back towards the Earth. With judicious planning a single loop about the Earth, as viewed in 
the Earth-Moon rotating system, can be used to achieve the transfer. This results in other 
operational concerns such as shadows and transitions through radiation zones. Since this transfer 
requires greater than 28 days and resembles a transfer from the Earth to L4, it has not been 
included. 

G. Triangular to Co-linear 

The Jacobi constant can be used to determine the possible transfers from a triangular orbit to a co- 
linear orbit and the allowable directions as defined by the zero-velocity curves. A AV is applied 
that increases the energy to a sufficient level to change the Jacobi constant that allows the 
transfer. Using the correct AV and location for the maneuver, a trajectory can be computed that 
results in a close approach to the co-linear locations. A simple differential correction process can 
then be used to target to the co-linear orbit coordinates. The AV for the L4 to L2 transfer required 
288 m/s total and a 30-day duration. The transfer from L4 to L, required 460 m / s  and 138 days. 
Figures 27,28, and 29 show transfers from L4 to Lz, Ll,, and L3. 
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Figure 27. Transfer from L4 to L2 Figure 28. Transfer from L4 to L, 
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Figure 29. Transfer from L4 to L3 
The AVs to effect the transfer from each libration location to another are listed in Table 8 along 
with the trip duration. 

Table 8. Libration Orbit Cost for Transfers 

a = time required exceeds 28days 
b = time required exceeds 28days 
c = transfer not possible 
d = transfer not possible 
e =similar to L4 transfers 
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V. Summary 

Stationkeeping cost is dependent upon the amplitude of the libration orbit, the perturbations 
included, and the errors associated with operations, which include navigation errors. In our 
analysis, the L, and L2 stationkeeping cost without errors has a floor of about 10 m / s  per year. 
ms minimum is due to the method of selecting our targeting goals. We used a goal of zero 
velocity in the +x-axis direction for consistency in all simulations with maneuvers performed 
every half-orbit period. The correct velocity targets will be slightly different, possibly closer to 
-ti-IO m/s in the x-axis direction. Also, a multiple revolution target reduces the no-mor AV cost 
to just a few m / s  per year, but the addition of the naklgation, SRP, and maneuver errors drive the 
AV budget to much higher levels. The DC targeting method provides a lower cost than the dLQR 
for the base Lissajous orbits as it targets a condition that balances the orbit and allows it to 
complete another revolution without a reference orbit. 731s method may be similar to the 
removal of the unstable mode at specific intervals, but is dependent upon the target selection 
cnteria. The stationkeeping of a halo orbit is more costly, but will depend upon the method to 
maintain the zcomponent. We analyzed the cost of controlling the z-axis with a maneuver in the 
RLP z-axis direction at 1.5 days after the balancing maneuver performed at the x-z plane 
crossing. Also of note is that the DC targeter required an additional AV to provide a reasonable 
initial two-to-ihree orbits before settling in on smaller corrections, as seen in the figures. 
Stationkeeping of the L3. L4, Lj  locations was found to be of minimal cost. but still required some 
assistance. A goal of maintaining a constrained L4 orbit size seems unmanageable from a AV 
cost perspective. as the control must cancel much of the natural orbital dynamics. The yearly AV 
cost for L4 and L5 stationkeeping is on the order of tens of meters per second, and can easily be 
accomplished by targeting a C3 value of -1 .0km’/s2. The AV costs for transfer between libration 
orbit locations is dependent on the trip time and the use of natural motions which follow the zero- 
velocity contours. The transfer AV costs range from tens of meters per second to several hundred 
meters per second. 

VI. Conclusions 

Stationkeeping costs at the Earth-Moon system libration points cannot be estimated using simple 
Circular Restricted Three Body motion but must address the total X-body dynamics. Use of a full 
ephemeris and operational errors should be included in deriving any cost estimate. The dynamics 
of the region should be more l l l y  understood, such as the differences between the Li and Lz 
regions, in order to select the correct target goals when using a differential corrector for these 
stationkeeping estimates. The stationkeeping estimates of the quasi-stable L4, Lj and L3 locations 
were shown to be low and can be simplified by using common two-body and RLP plane crossing 
targets. Transfers between the Earth-Moon libration locations are very dependent upon the overall 
dynamics. The use of natural motions may reduce AV cost, but may significantly increase trip 
durations. 
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